If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64x^2=(2-3x)(2+3x)
We move all terms to the left:
64x^2-((2-3x)(2+3x))=0
We add all the numbers together, and all the variables
64x^2-((-3x+2)(3x+2))=0
We multiply parentheses ..
64x^2-((-9x^2-6x+6x+4))=0
We calculate terms in parentheses: -((-9x^2-6x+6x+4)), so:We get rid of parentheses
(-9x^2-6x+6x+4)
We get rid of parentheses
-9x^2-6x+6x+4
We add all the numbers together, and all the variables
-9x^2+4
Back to the equation:
-(-9x^2+4)
64x^2+9x^2-4=0
We add all the numbers together, and all the variables
73x^2-4=0
a = 73; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·73·(-4)
Δ = 1168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1168}=\sqrt{16*73}=\sqrt{16}*\sqrt{73}=4\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{73}}{2*73}=\frac{0-4\sqrt{73}}{146} =-\frac{4\sqrt{73}}{146} =-\frac{2\sqrt{73}}{73} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{73}}{2*73}=\frac{0+4\sqrt{73}}{146} =\frac{4\sqrt{73}}{146} =\frac{2\sqrt{73}}{73} $
| -4x^2+2x=-3 | | 6.8+0.7x=-0.8+4.5x | | x+1/x-1=2/3 | | n/10+7=16 | | 5r+293r-1=-46 | | –3t+6=0 | | -2/5=3/8+p | | 20x2X+2X=84 | | 1x-2=5x+1 | | ((7x-5)/3)-((9x+4)/7)=3 | | -2.6n-0.3-5.4n=-12.3 | | 3x=3x(5+4) | | 6x-7=3x-6 | | -8x/5+2=-30 | | 2+7x+4x=79 | | 3+33x=34x-1 | | 12x²+60x+75=0 | | N2+8=3(n+3) | | -9=5v+6-8v | | -2-18x=70 | | 10+1×5=x | | 3x+7+1=10x+2 | | –8+8g=56 | | −5x^2+7x=−9 | | 280=12+2x | | 6(x-1)+1=-25 | | 20.8=y/6-1.6 | | 3(m-4)+10=28 | | 6(2x-3)-3=2x | | 10+1x5=0 | | 9w-14=4 | | 2/7y+5=–9 |